The emergent role of explainable artificial intelligence in the materials sciences
· 5 min read
논문 정보
- 제목: The emergent role of explainable artificial intelligence in the materials sciences
- 저자: Tommy Liu (School of Computing, Australian National University), Amanda S. Barnard (School of Computing, Australian National University)
- 학회/저널: Cell Reports Physical Science
- 발행일: 2023-10-18
- DOI: 10.1016/j.xcrp.2023.101630
- 주요 연구 내용: 본 논문은 설명가능 인공지능(XAI)의 현황을 검토하고, 재료 정보학 워크플로우를 보강할 수 있는 도구로서 XAI 방법론(내재적, 사후, 데이터-프로세스)을 분류하여 제시함. 특히 재료 과학 분야에서 활용되는 복잡한 블랙박스 모델을 해석하기 위해 모델에 구애받지 않는 사후 분석 기법인 SHAP(Shapley additive explanations)의 중요성을 강조함.
- 주요 결과 및 결론: XAI는 재료 과학에서 머신러닝 예측을 실제 전략으로 전환하는 데 있어 신뢰성 구축, 인과관계 이해에 필수적임. 특히 섀플리 값(Shapley values)과 같은 XAI 기법의 도입은 모델을 개선하고, 실험 설계를 안내하며, 머신러닝 예측에 기반한 투자 결정을 정당화함으로써 재료 발견을 가속화할 수 있음.
- 기여점: 재료 과학자들을 위한 XAI 활용 실용 가이드를 제공하며 물리 과학 분야와 가장 관련성이 높은 방법들을 조명함. 복잡한 머신러닝 예측과 과학적 이해 사이의 간극을 메우고, 재료 정보학에서 모델 검증과 과학적 방법의 가속화에 있어 XAI의 역할을 제시함.