Application of Reinforcement Learning to Dyeing Processes for Residual Dye Reduction
· 5 min read
논문 정보
- 제목: Application of Reinforcement Learning to Dyeing Processes for Residual Dye Reduction
- 저자: Whan Lee, Seyed Mohammad Mehdi Sajadieh, Hye Kyung Choi, Jisoo Park, Sang Do Noh (Sungkyunkwan University)
- 학회/저널: International Journal of Precision Engineering and Manufacturing-Green Technology
- 발행일: 2024-04-16
- DOI: 10.1007/s40684-024-00627-7
- 주요 연구 내용: 실제 생산 시설에서 수집한 데이터를 활용하여 잔류 염료 배출을 예측하는 Gradient Boosting(GB) 모델과, 잔류 염료를 최소화하기 위한 공정 변수를 추천하는 Q-learning 기반의 강화학습 모델(DPRM)을 개발함.
- 주요 결과 및 결론: 개발된 예측 모델은 값 0.96의 높은 예측 성능을 보였으며, 공정 변수 추천을 통해 평균 66.58%의 잔류 염료 감소를 달성함. 실제 현장 실험을 통해 두 가지 처방에서 각각 42.92%와 76.33%의 잔류 염료 감소 효과를 검증함.
- 기여점: 고가의 추가 장비나 화학물질 없이, 데이터 기반의 강화학습 접근법을 통해 염색 공정의 잔류 염료 발생을 효과적으로 예측하고 줄이는 혁신적인 방법을 제안하여 친환경 공정 운영에 기여함.