Skip to main content

5 posts tagged with "Review"

리뷰 논문

View All Tags

AI-Assisted Discovery of Biodegradable Polymer Alternatives

· 7 min read
Peter Broklyn
연구원
Sabir K
연구원

논문 정보

  • 제목: AI-Assisted Discovery of Biodegradable Polymer Alternatives
  • 저자: Peter Broklyn, Sabir K
  • 학회/저널: Polymer Recycling
  • 발행일: 2024년 12월
  • DOI: -
  • 주요 연구 내용: 인공지능(AI)을 활용하여 생분해성 고분자 대체재를 발견하는 방법론과 기술을 탐색하는 연구임. 기존의 시간과 비용이 많이 소모되는 시행착오 기반의 접근법 대신, AI를 통해 물질의 특성을 예측하고, 고분자 제형을 최적화하며, 새로운 대체재를 식별하는 과정을 가속화하는 역할을 강조함.
  • 주요 결과 및 결론: 머신러닝을 이용해 고분자의 물성을 예측하고, 생성 모델을 활용해 새로운 고분자 구조를 설계하며, 데이터 마이닝과 고속 스크리닝을 통해 유망한 후보를 식별할 수 있음을 보여줌. 이러한 AI 기술은 생분해성 폴리에스터 및 고분자 혼합물의 개발 사례에서 그 유용성이 입증됨.
  • 기여점: 기존의 고분자 연구 개발의 한계를 극복하기 위해 AI의 잠재력을 제시함. 특히, 분자 구조와 물성 간의 관계를 밝혀내고, 새로운 물질을 제안하며, 실험 과정을 간소화하는 데 AI가 핵심적인 역할을 할 수 있음을 보여줌으로써 지속 가능한 소재 개발의 새로운 방향을 제시함.

The emergent role of explainable artificial intelligence in the materials sciences

· 5 min read
Tommy Liu
Australian National University 연구원
Amanda S. Barnard
연구원

논문 정보

  • 제목: The emergent role of explainable artificial intelligence in the materials sciences
  • 저자: Tommy Liu (School of Computing, Australian National University), Amanda S. Barnard (School of Computing, Australian National University)
  • 학회/저널: Cell Reports Physical Science
  • 발행일: 2023-10-18
  • DOI: 10.1016/j.xcrp.2023.101630
  • 주요 연구 내용: 본 논문은 설명가능 인공지능(XAI)의 현황을 검토하고, 재료 정보학 워크플로우를 보강할 수 있는 도구로서 XAI 방법론(내재적, 사후, 데이터-프로세스)을 분류하여 제시함. 특히 재료 과학 분야에서 활용되는 복잡한 블랙박스 모델을 해석하기 위해 모델에 구애받지 않는 사후 분석 기법인 SHAP(Shapley additive explanations)의 중요성을 강조함.
  • 주요 결과 및 결론: XAI는 재료 과학에서 머신러닝 예측을 실제 전략으로 전환하는 데 있어 신뢰성 구축, 인과관계 이해에 필수적임. 특히 섀플리 값(Shapley values)과 같은 XAI 기법의 도입은 모델을 개선하고, 실험 설계를 안내하며, 머신러닝 예측에 기반한 투자 결정을 정당화함으로써 재료 발견을 가속화할 수 있음.
  • 기여점: 재료 과학자들을 위한 XAI 활용 실용 가이드를 제공하며 물리 과학 분야와 가장 관련성이 높은 방법들을 조명함. 복잡한 머신러닝 예측과 과학적 이해 사이의 간극을 메우고, 재료 정보학에서 모델 검증과 과학적 방법의 가속화에 있어 XAI의 역할을 제시함.

Deep learning-based fabric defect detection: A review

· 5 min read
Yavuz Kahraman
Adiyaman University 연구원
Alptekin Durmuşoğlu
연구원

논문 정보

  • 제목: Deep learning-based fabric defect detection: A review
  • 저자: Yavuz Kahraman (Adiyaman University), Alptekin Durmuşoğlu (Gaziantep University)
  • 학회/저널: Textile Research Journal
  • 발행일: 2022-10-17
  • DOI: 10.1177/00405175221130773
  • 주요 연구 내용: 2003년부터 현재까지 발표된 딥러닝 기반 직물 결함 검출 관련 논문 38개를 체계적으로 검토하고 분류함. 연구들은 주로 합성곱 신경망(CNN), 생성적 적대 신경망(GAN), 오토인코더(Autoencoder), 순환 신경망(LSTM)과 같은 주요 딥러닝 아키텍처를 기반으로 분석되었음.
  • 주요 결과 및 결론: 딥러닝, 특히 CNN 기반 방법론이 직물 결함 검출에서 95% 이상의 높은 성공률을 보이며 매우 효과적임을 확인함. 가장 많이 활용된 공개 데이터셋은 TILDA였으나, 연구의 일반화와 재현성을 위해 표준화된 대규모 데이터베이스 구축의 필요성을 제기함.
  • 기여점: 본 논문은 딥러닝 기반 직물 결함 검출 분야를 전문적으로 다룬 최초의 최신 리뷰 연구임. 주요 딥러닝 아키텍처의 장단점을 비교 분석하고, 사용된 데이터셋과 성능을 종합적으로 정리하여 해당 분야 연구자들에게 유용한 참고 자료와 향후 연구 방향을 제시함.

Explainable machine learning in materials science

· 6 min read
Xiaoting Zhong
연구원
Brian Gallagher
연구원
Shusen Liu
연구원
Bhavya Kailkhura
연구원
Anna Hiszpanski
연구원
T. Yong-Jin Han
연구원

논문 정보

  • 제목: Explainable machine learning in materials science
  • 저자: Xiaoting Zhong, Brian Gallagher, Shusen Liu, Bhavya Kailkhura, Anna Hiszpanski, T. Yong-Jin Han (Lawrence Livermore National Laboratory)
  • 학회/저널: npj Computational Materials
  • 발행일: 2022-09-22
  • DOI: 10.1038/s41524-022-00884-7
  • 주요 연구 내용: 재료과학 분야에서 높은 정확도를 가진 머신러닝 모델의 블랙박스 문제를 해결하기 위한 설명 가능 인공지능(XAI)의 개념과 기술을 소개함. 모델 처리 과정(후처리)과 모델 설계(선행) 측면에서 DNN을 설명하는 다양한 방법을 분류하고, 실제 재료과학 응용 사례를 검토함.
  • 주요 결과 및 결론: 재료과학 연구에서 XAI 기술, 특히 히트맵과 같은 시각화 기법이 모델 예측을 신뢰하고, 모델의 오류 원인을 진단하며, 새로운 과학적 가설을 생성하는 데 효과적임을 보여줌. 또한, XAI가 아직 초기 단계이며 재료과학 데이터의 명확한 정답(ground truth) 부족, 설명 평가의 어려움 등 해결해야 할 과제가 많음을 지적함.
  • 기여점: 재료과학 분야 연구자들에게 XAI에 대한 입문서 역할을 제공하며, 예측 정확도뿐만 아니라 설명 가능성을 원하는 이들에게 유용한 개념적 틀과 실제 적용 사례를 제시함. 논문은 XAI 기술의 유용성을 강조하는 동시에, 무분별한 해석을 피하고 적절한 평가의 필요성을 역설함.

Automated fabric defect detection—A review

· 5 min read
Henry Y.T. Ngan
The University of Hong Kong 연구원

논문 정보

  • 제목: Automated fabric defect detection—A review
  • 저자: Henry Y.T. Ngan, Grantham K.H. Pang, Nelson H.C. Yung (The University of Hong Kong)
  • 학회/저널: Image and Vision Computing
  • 발행일: 2011-02-27
  • DOI: 10.1016/j.imavis.2011.02.002
  • 주요 연구 내용: 본 논문은 최근의 자동화된 직물 결함 검출 방법들을 종합적으로 리뷰함. 연구들을 크게 비-모티프 기반(non-motif-based) 접근법과 모티프 기반(motif-based) 접근법으로 나누고, 다시 통계적, 스펙트럼, 모델 기반, 학습, 구조적, 하이브리드, 모티프 기반의 7가지 카테고리로 세분화하여 분석함.
  • 주요 결과 및 결론: 각 방법론의 검출 성공률, 강점, 약점을 비교 분석한 결과를 제시함. 특정 패턴 그룹(p1)에 특화된 방법들은 높은 성공률을 보이지만 일반성이 부족하며, 여러 패턴 그룹에 적용 가능한 모티프 기반 접근법은 일반성이 높지만 상대적으로 성공률이 약간 낮음. 향후 연구 방향으로 공통 참조 데이터베이스 구축, 하이브리드 접근법 개발, 실시간 적용을 위한 계산 효율성 향상 등을 제안함.
  • 기여점: 직물 결함 검출 연구에 대한 최신 동향을 제공하며, 7가지 클래스로 구성된 넓은 범위의 분류 체계를 제안함. 각 방법론에 대한 정성적 분석과 검출 성공률 데이터를 포함하여 비교 연구를 수행하고, 향후 연구 방향에 대한 통찰을 제공함.