생분해성 섬유 방사 공정 데이터 특성을 고려한 물성 예측 모델 개발
· 4 min read
논문 정보
- 제목: 생분해성 섬유 방사 공정 데이터 특성을 고려한 물성 예측 모델 개발 (The Development of Property Prediction Model in Consideration of Biodegradable Fiber Spinning Process Data Characteristics)
- 저자: 박세찬, 김덕엽, 서강복, 이우진 (경북대학교 컴퓨터학부)
- 학회/저널: ASK 2022 학술발표대회 논문집
- 발행일: 2022-01-01
- DOI: 제공되지 않음
- 주요 연구 내용: 섬유 방사 공정 데이터는 양이 적고 분포가 불균형하며, 동일 조건 샘플 간에도 오차가 존재하는 특성이 있음. 본 논문은 이러한 특성을 반영하여, 물성 단위와 허용오차를 고려한 이상치 처리 기법과 데이터 불균형 정도 및 물성과의 상관성을 고려한 오버샘플링 기법을 제안함.
- 주요 결과 및 결론: 제안된 데이터 전처리 기법들을 MLP 모델에 적용한 결과, 조정된 결정계수는 0.479에서 0.789로 크게 향상되었고, 평균절대오차는 0.165에서 0.120으로 약 27% 감소함. 이를 통해 모델의 데이터 적합도와 예측 정확성이 크게 개선되었음을 확인함.
- 기여점: 데이터 확보가 어려운 섬유 방사 공정의 현실적인 문제를 해결하기 위해 도메인 지식(공정관리한계 허용오차)을 활용한 데이터 처리 기법을 제안함. 데이터 불균형과 상관성을 동시에 고려한 오버샘플링을 통해 물성 예측 모델의 성능을 실질적으로 개선하여 AI 기술의 현장 적용 가능성을 높임.