Skip to main content

One post tagged with "Computational chemistry"

계산화학

View All Tags

Scaling deep learning for materials discovery

· 6 min read
Amil Merchant
Google DeepMind 연구원
Simon Batzner
연구원
Samuel S. Schoenholz
연구원
Muratahan Aykol
연구원

논문 정보

  • 제목: Scaling deep learning for materials discovery
  • 저자: Amil Merchant (Google DeepMind), Simon Batzner (Google DeepMind), Samuel S. Schoenholz (Google DeepMind), Muratahan Aykol (Google Research), Gowoon Cheon (Google Research), Ekin Dogus Cubuk (Google DeepMind)
  • 학회/저널: Nature
  • 발행일: 2023-11-29
  • DOI: 10.1038/s41586-023-06735-9
  • 주요 연구 내용: 본 연구는 그래프 신경망(GNN)을 대규모로 확장하고 액티브 러닝을 적용하여 무기 결정의 안정성을 정확하게 예측하는 GNOME(Graph Networks for Materials Exploration) 프레임워크를 개발했다. 이 프레임워크는 대칭성을 고려한 부분 치환(SAPS)과 같은 새로운 후보군 생성 방법과 밀도 범함수 이론(DFT) 계산을 결합한 반복적인 학습 사이클을 통해 모델을 지속적으로 개선하며 방대한 화학 공간을 효율적으로 탐색함.
  • 주요 결과 및 결론: GNOME을 통해 기존 연구 대비 220만 개의 새로운 안정적인 결정 구조를 발견했으며, 이 중 381,000개는 새로운 볼록 껍질(convex hull)을 형성하여 인류에게 알려진 안정적인 재료의 수를 10배 가까이 확장함. 최종 모델은 에너지 예측 오차를 원자당 11 meV까지 낮췄으며, 안정적인 구조 예측의 정확도(hit rate)를 80% 이상으로 향상시킴. 또한, 이 과정에서 생성된 방대한 데이터셋은 전이 학습 없이도 높은 정확도를 보이는 범용 머신러닝 원자간 전위(MLIP) 모델 개발을 가능하게 함.
  • 기여점: 알려진 안정적인 무기 재료의 수를 10배 가까이 확장하여 재료 과학 분야에 방대한 데이터를 제공함. 딥러닝 모델의 규모를 확장함으로써 학습 데이터 분포를 벗어나는 문제(out-of-distribution)에 대한 일반화 성능이 향상될 수 있음을 보여주었고, 이는 과학적 발견에서 머신러닝의 근본적인 한계를 극복할 가능성을 제시함. 또한, 생성된 데이터셋을 통해 특정 재료에 대한 추가 학습 없이도 분자 동역학 시뮬레이션에 바로 사용될 수 있는 고성능 사전 학습 원자간 전위 모델을 개발함.