Skip to main content

2 posts tagged with "Property prediction"

물성 예측

View All Tags

데이터 변동률 기반 회귀 체인을 사용한 생분해성 섬유 원사 물성 예측 모델 개선

· 4 min read
김덕엽
경북대학교 컴퓨터학부 박사과정생
류영교
경북대학교 학부연구생
강보권
경북대학교 학부연구생
김태환
경북대학교
이우진
경북대학교 컴퓨터학부 전임교수

논문 정보

  • 제목: 데이터 변동률 기반 회귀 체인을 사용한 생분해성 섬유 원사 물성 예측 모델 개선 (Improving biodegradable fiber yarn property prediction model using data change rate-based regression chain)
  • 저자: 김덕엽, 류영교, 강보권, 김태환, 이우진 (경북대학교 IT대학 컴퓨터학부)
  • 학회/저널: 2024 한국소프트웨어종합학술대회 논문집
  • 발행일: 2024-12
  • DOI: 제공되지 않음
  • 주요 연구 내용: 본 연구는 데이터 수집 및 분포가 불균형한 생분해성 섬유 방사 데이터의 물성 예측 정확도를 높이기 위한 방법을 제안함. 기존의 상관 분석은 신뢰성이 떨어지므로, 방사 공정 데이터에 따른 물성 데이터의 변동률을 계산하고 변동률 간의 상관관계를 분석하여 물성 간 종속성을 평가함. 이 평가 결과를 바탕으로 회귀 체인(Regression Chain)을 구성하여 예측 모델을 개선함.
  • 주요 결과 및 결론: 데이터 변동률 기반 분석 결과, 인장강도는 인장신도와 강한 종속성을 보였으며(상관계수 0.73), 이는 기존 상관 분석 결과와 다름. 이 결과를 바탕으로 인장신도를 예측하여 인장강도 예측 모델의 입력으로 사용하는 회귀 체인을 적용했을 때, 기존 모델 대비 MAE는 13%, MSE는 20%, R²는 5% 향상된 성능을 보임.
  • 기여점: 불균형한 산업 데이터에서 기존 상관 분석의 한계를 지적하고, 데이터 변동률이라는 새로운 기준으로 물성 간 종속성을 더 신뢰성 있게 평가하는 방법을 제시함. 이는 국한적인 상황에서 회귀 체인 모델을 적용하여 예측 성능을 향상시킬 수 있음을 실험적으로 입증함.

Material Property Prediction with Element Attribute Knowledge Graphs and Multimodal Representation Learning

· 5 min read
Chao Huang
연구원
Chunyan Chen
연구원
Ling Shil
연구원
Chen Chen
연구원

논문 정보

  • 제목: Material Property Prediction with Element Attribute Knowledge Graphs and Multimodal Representation Learning
  • 저자: Chao Huang (Institute of Computing Technology, Chinese Academy of Science; Ningbo Institute of Information Technology Application, Chinese Academy of Sciences), Chunyan Chen (Institute of Computing Technology, Chinese Academy of Science), Ling Shil (Institute of Computing Technology, Chinese Academy of Science), Chen Chen (Ningbo Institute of Information Technology Application, Chinese Academy of Sciences)
  • 학회/저널: arXiv
  • 발행일: 2024-11-13
  • DOI: 제공되지 않음
  • 주요 연구 내용: 기존 결정질 재료 물성 예측 모델들이 원소의 화학적, 물리적 특성을 간과하는 한계를 해결하고자 함. 원소의 속성(원자 반경, 전기음성도 등)을 체계화한 지식 그래프를 구축하고, 이를 임베딩하여 원소 속성 특징을 추출함. 이 특징을 결정 구조 그래프에서 추출한 특징과 결합하는 멀티모달 융합 프레임워크 'ESNet'을 제안함.
  • 주요 결과 및 결론: Materials Project 벤치마크 데이터셋을 이용한 실험에서, ESNet은 밴드갭 예측에서 기존 SOTA 모델들을 능가하는 성능(MAE 0.177 eV)을 달성했으며, 형성 에너지 예측에서는 대등한 결과를 보임. 이를 통해 구조적 정보에 화학적 사전 지식(원소 속성)을 통합하는 것이 물성 예측 정확도를 크게 향상시킬 수 있음을 입증함.
  • 기여점: 첫째, 재료 과학 분야에 활용 가능한 원소 속성 지식 그래프를 구축함. 둘째, 원소 속성 특징과 결정 구조 특징을 통합하는 새로운 멀티모달 융합 프레임워크 ESNet을 제안함. 셋째, 화학적 사전 지식의 통합이 재료 물성 예측, 특히 밴드갭 예측의 정확도를 크게 향상시킬 수 있음을 실험적으로 증명함.