Skip to main content

2 posts tagged with "Optimization"

최적화

View All Tags

WHAT DOES IT MEAN TO BE A TRANSFORMER? INSIGHTS FROM A THEORETICAL HESSIAN ANALYSIS

· 5 min read
Weronika Ormaniec
연구원
Felix Dangel
연구원
Sidak Pal Singh
연구원

논문 정보

  • 제목: WHAT DOES IT MEAN TO BE A TRANSFORMER? INSIGHTS FROM A THEORETICAL HESSIAN ANALYSIS
  • 저자: Weronika Ormaniec (ETH Zürich), Felix Dangel (Vector Institute), Sidak Pal Singh (ETH Zürich)
  • 학회/저널: ICLR 2025
  • 발행일: 2025-03-17
  • DOI: 해당 없음
  • 주요 연구 내용: 단일 셀프 어텐션 레이어의 손실 함수에 대한 헤시안 행렬을 이론적으로 완전히 유도하고, 이를 행렬 미분 형태로 표현함. 헤시안의 각 블록이 데이터, 가중치, 어텐션 모멘트(attention moments)에 어떻게 의존하는지 분석하여 기존 MLP나 CNN과의 구조적 차이점을 명확히 함.
  • 주요 결과 및 결론: 트랜스포머 헤시안은 파라미터 그룹(Query, Key, Value)에 따라 데이터와 가중치에 대한 의존성이 매우 비선형적이고 이질적(heterogeneous)임을 보임. Softmax 활성화 함수와 Query-Key 파라미터화와 같은 트랜스포머의 핵심 설계 요소가 이러한 이질성의 주요 원인임을 밝힘.
  • 기여점: 트랜스포머 학습에 통용되는 적응형 옵티마이저, 레이어 정규화, 학습률 워밍업 등의 기법이 필요한 이유를 헤시안의 복잡하고 이질적인 구조를 통해 설명함. 이는 트랜스포머의 독특한 최적화 환경과 그로 인한 문제들에 대한 깊은 이론적 토대를 제공함.

XGBoost: A Scalable Tree Boosting System

· 6 min read
Tianqi Chen
University of Washington 연구원
Carlos Guestrin
연구원

논문 정보

  • 제목: XGBoost: A Scalable Tree Boosting System
  • 저자: Tianqi Chen (University of Washington), Carlos Guestrin (University of Washington)
  • 학회/저널: KDD '16 (The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining)
  • 발행일: 2016-08-13
  • DOI: 10.1145/2939672.2939785
  • 주요 연구 내용: 본 논문은 확장 가능한 엔드투엔드 트리 부스팅 시스템인 XGBoost를 제안함. 희소 데이터를 효율적으로 처리하기 위한 새로운 희소성 인지 알고리즘(sparsity-aware algorithm)과 근사 트리 학습을 위한 가중치 분위 스케치(weighted quantile sketch)를 도입함. 또한, 캐시 접근 패턴, 데이터 압축, 샤딩(sharding)과 같은 시스템 최적화를 통해 확장성을 극대화함.
  • 주요 결과 및 결론: XGBoost는 단일 머신에서 기존 솔루션보다 10배 이상 빠른 성능을 보이며, 분산 및 메모리 제한 환경에서도 수십억 개의 대용량 데이터를 훨씬 적은 리소스로 처리할 수 있음. 이러한 알고리즘과 시스템 최적화의 결합을 통해 실제 대규모 문제를 해결하는 강력한 솔루션 제공.
  • 기여점: 고도로 확장 가능한 엔드투엔드 트리 부스팅 시스템을 설계 및 구축함. 병렬 트리 학습을 위한 새로운 희소성 인지 알고리즘과 효율적인 제안 계산을 위한 이론적으로 정당화된 가중치 분위 스케치를 제안함. 또한, 메모리 외부(out-of-core) 트리 학습을 위한 효과적인 캐시 인식 블록 구조를 도입하여 시스템 효율성을 높임.