본문으로 건너뛰기

생분해성 섬유 방사 공정 데이터 특성을 고려한 물성 예측 모델 개발

· 약 4분
박세찬
경북대학교 컴퓨터학부 박사
김덕엽
경북대학교 컴퓨터학부 박사과정생
서강복
경북대학교 컴퓨터학부 박사
이우진
경북대학교 컴퓨터학부 전임교수

논문 정보

  • 제목: 생분해성 섬유 방사 공정 데이터 특성을 고려한 물성 예측 모델 개발 (The Development of Property Prediction Model in Consideration of Biodegradable Fiber Spinning Process Data Characteristics)
  • 저자: 박세찬, 김덕엽, 서강복, 이우진 (경북대학교 컴퓨터학부)
  • 학회/저널: ASK 2022 학술발표대회 논문집
  • 발행일: 2022-01-01
  • DOI: 제공되지 않음
  • 주요 연구 내용: 섬유 방사 공정 데이터는 양이 적고 분포가 불균형하며, 동일 조건 샘플 간에도 오차가 존재하는 특성이 있음. 본 논문은 이러한 특성을 반영하여, 물성 단위와 허용오차를 고려한 이상치 처리 기법과 데이터 불균형 정도 및 물성과의 상관성을 고려한 오버샘플링 기법을 제안함.
  • 주요 결과 및 결론: 제안된 데이터 전처리 기법들을 MLP 모델에 적용한 결과, 조정된 결정계수는 0.479에서 0.789로 크게 향상되었고, 평균절대오차는 0.165에서 0.120으로 약 27% 감소함. 이를 통해 모델의 데이터 적합도와 예측 정확성이 크게 개선되었음을 확인함.
  • 기여점: 데이터 확보가 어려운 섬유 방사 공정의 현실적인 문제를 해결하기 위해 도메인 지식(공정관리한계 허용오차)을 활용한 데이터 처리 기법을 제안함. 데이터 불균형과 상관성을 동시에 고려한 오버샘플링을 통해 물성 예측 모델의 성능을 실질적으로 개선하여 AI 기술의 현장 적용 가능성을 높임.

Fabric Defect Classification Using Combination of Deep Learning and Machine Learning

· 약 3분
Semih UTKU
연구원
Hakan ÖZDEMİR
연구원

논문 정보

  • 제목: Fabric Defect Classification Using Combination of Deep Learning and Machine Learning
  • 저자: Fatma Günseli YAŞAR ÇIKLAÇANDIR (İzmir Katip Çelebi University), Semih UTKU (Dokuz Eylul University), Hakan ÖZDEMİR (Dokuz Eylul University)
  • 학회/저널: Journal of Artificial Intelligence and Data Science (JAIDA)
  • 발행일: 2021-08-12
  • DOI: 제공되지 않음
  • 주요 연구 내용: 딥러닝 모델(ResNet18, GoogLeNet)을 이용한 원단 불량 분류와, 이 모델들에서 특징만 추출하고 분류는 SVM(Support Vector Machines)으로 수행하는 하이브리드 방식의 성능을 비교 분석함. 딥러닝의 단점인 긴 처리 시간을 개선하는 것을 목표로 함.
  • 주요 결과 및 결론: 순수 ResNet18 모델이 가장 높은 분류 정확도(최대 87.5%)를 보였으나, ResNet18로 특징을 추출하고 SVM으로 분류하는 하이브리드 모델은 정확도 저하가 크지 않으면서도 분류 시간을 약 60배 단축시키는 결과를 보임.
  • 기여점: 딥러닝의 높은 특징 추출 능력과 머신러닝 분류기의 속도 이점을 결합하여, 원단 불량 검출 시스템에서 시간 효율성과 정확성 간의 균형을 맞춘 실용적인 접근법을 제시함. 이를 통해 속도가 중요한 실제 생산 환경에 적용 가능한 지능형 시스템의 가능성을 보임.

Improving Viewing Experiences of First-Person Shooter Gameplays with Automatically-Generated Motion Effects

· 약 6분
Gyeore Yun
POSTECH 연구원
Hyoseung Lee
연구원
Sangyoon Han
연구원
Seungmoon Choi
POSTECH 교수

논문 정보

  • 제목: Improving Viewing Experiences of First-Person Shooter Gameplays with Automatically-Generated Motion Effects
  • 저자: Gyeore Yun, Sangyoon Han, Hyoseung Lee, Seungmoon Choi (Pohang University of Science and Technology)
  • 학회/저널: CHI Conference on Human Factors in Computing Systems (CHI '21)
  • 발행일: 2021-05-08
  • DOI: 10.1145/3411764.3445358
  • 주요 연구 내용: 1인칭 슈팅(FPS) 게임 시청 경험을 향상시키기 위해, 게임의 시청각(audiovisual) 스트림을 분석하여 자동으로 모션 효과를 생성하는 두 가지 알고리즘을 제안함. 첫 번째는 컴퓨터 비전 기술을 이용해 카메라 움직임을 추정하여 캐릭터의 이동을 표현, 두 번째는 딥러닝 모델로 총소리를 탐지하여 총기 반동 효과를 생성함.
  • 주요 결과 및 결론: 사용자 연구 결과, 제안된 모션 효과가 게임 시청의 즐거움과 몰입감을 유의미하게 향상시킴. 특히 캐릭터 움직임과 총기 발사 효과를 결합했을 때(ME-COM) 시너지 효과를 보이며 가장 높은 몰입감과 선호도를 얻음. 모션 효과는 시청자의 게임 집중력을 방해하지 않았으나, 피로도는 다소 증가시키는 것으로 나타남.
  • 기여점: FPS 게임에 특화된 두 가지 모션 합성 알고리즘을 설계하고 통합했으며, 자동으로 생성된 다감각 효과가 e스포츠 시청 경험에 실질적인 이점을 제공한다는 경험적 증거를 제시함. 이는 개발자의 수동 작업 없이 다양한 게임에 4D 효과를 적용할 수 있는 확장 가능한 방법을 제안한다는 점에서 의의가 있음.

Generative Adversarial Networks

· 약 4분
Ian Goodfellow
Google Brain 연구원
Jean Pouget-Abadie
연구원
Mehdi Mirza
연구원
Bing Xu
연구원
David Warde-Farley
연구원
Sherjil Ozair
연구원
Aaron Courville
연구원
Yoshua Bengio
연구원

논문 정보

  • 제목: Generative Adversarial Networks
  • 저자: Ian Goodfellow (Google Brain), Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (Université de Montréal)
  • 학회/저널: Communications of the ACM (Original paper in NIPS 2014)
  • 발행일: 2020-11-01
  • DOI: 10.1145/3422622
  • 주요 연구 내용: 생성자(Generator)와 판별자(Discriminator)라는 두 개의 신경망을 경쟁적으로 학습시키는 새로운 생성 모델 프레임워크를 제안함. 생성자는 실제 데이터와 유사한 가짜 데이터를 생성하고, 판별자는 실제 데이터와 가짜 데이터를 구별하도록 학습함. 이 적대적 과정을 통해 생성자는 실제 데이터의 분포를 학습하게 됨.
  • 주요 결과 및 결론: GAN은 특히 고해상도의 사실적인 이미지를 생성하는 데 있어 가장 성공적인 생성 모델 중 하나임을 입증함. 이 프레임워크는 다루기 힘든 확률 밀도 함수를 근사할 필요 없이 모델을 학습시킬 수 있다는 장점이 있음. 그러나 학습 과정의 불안정성은 여전히 해결해야 할 주요 과제로 남아있음.
  • 기여점: 기존 생성 모델의 어려움이었던 명시적 확률 밀도 추정이나 마르코프 체인 기반의 느린 샘플링 과정을 피하는, 게임 이론에 기반한 새로운 생성 모델링 접근법을 제시함. 이 적대적 학습 프레임워크는 고품질의 결과물을 생성하는 데 매우 효과적이며, 비지도 학습 분야에 큰 영향을 미침.

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

· 약 4분
Victor Sanh
연구원
Lysandre Debut
연구원
Julien Chaumond
연구원
Thomas Wolf
연구원

논문 정보

  • 제목: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
  • 저자: Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (Hugging Face)
  • 학회/저널: arXiv
  • 발행일: 2020-03-01
  • DOI: arXiv:1910.01108
  • 주요 연구 내용: BERT와 같은 대규모 사전 훈련 모델을 경량화하기 위해 지식 증류(Knowledge Distillation) 기법을 사전 훈련 단계에 적용. 학생 모델(DistilBERT)이 교사 모델(BERT)의 동작을 학습하도록 언어 모델링, 증류, 코사인 거리 손실을 결합한 삼중 손실(triple loss)을 도입하여 훈련.
  • 주요 결과 및 결론: DistilBERT는 BERT보다 파라미터 수가 40% 적고, 추론 속도는 60% 빠르면서도 GLUE 벤치마크에서 BERT 성능의 97%를 유지함. 이를 통해 제한된 컴퓨팅 환경이나 모바일 기기에서도 효율적으로 동작할 수 있는 범용 언어 모델의 가능성을 입증.
  • 기여점: 기존의 태스크 특화적 증류 방식에서 벗어나, 사전 훈련 단계에 지식 증류를 적용하여 범용적으로 사용 가능한 작고 빠른 언어 모델을 성공적으로 개발함. 또한 삼중 손실 함수와 교사 모델의 가중치를 활용한 초기화 방법을 제안하여 효과적인 지식 전수를 이룸.

Attention Is All You Need

· 약 6분
Ashish Vaswani
Google Research 연구원
Noam Shazeer
연구원
Niki Parmar
연구원
Jakob Uszkoreit
연구원
Llion Jones
연구원
Aidan Gomez
연구원
Lukasz Kaiser
연구원
Illia Polosukhin
연구원

논문 정보

  • 제목: Attention Is All You Need
  • 저자: Ashish Vaswani (Google Brain), Noam Shazeer (Google Brain), Niki Parmar (Google Research), Jakob Uszkoreit (Google Research), Llion Jones (Google Research), Aidan N. Gomez (University of Toronto), Łukasz Kaiser (Google Brain), Illia Polosukhin
  • 학회/저널: 31st Conference on Neural Information Processing Systems (NIPS 2017)
  • 발행일: 2017-12-06
  • DOI: 10.48550/arXiv.1706.03762
  • 주요 연구 내용: 이 연구는 순환(recurrence) 및 합성곱(convolution)을 완전히 배제하고 오직 어텐션(attention) 메커니즘에만 의존하는 새로운 시퀀스 변환 모델인 '트랜스포머'를 제안함. 트랜스포머는 인코더-디코더 구조를 따르며, 각 부분은 여러 개의 동일한 레이어를 쌓아 구성되고, 각 레이어는 멀티-헤드 셀프-어텐션과 위치별 피드포워드 네트워크라는 두 개의 핵심적인 하위 레이어로 이루어짐.
  • 주요 결과 및 결론: 트랜스포머는 기계 번역 작업에서 기존의 최고 성능 모델들을 능가하는 결과를 보임. WMT 2014 영어-독일어 번역 태스크에서 28.4 BLEU 점수를 기록하여 기존 최고 기록을 2 BLEU 이상 경신하며, 영어-프랑스어 번역 태스크에서는 41.8 BLEU 점수로 새로운 단일 모델 최고 기록을 세움. 이러한 성과를 기존 모델들보다 훨씬 적은 훈련 시간으로 달성하여 병렬화의 이점을 입증함.
  • 기여점: 본 논문은 어텐션 메커니즘만으로도 시퀀스 변환 작업에서 최첨단 성능을 달성할 수 있음을 보여줌. 순차적 계산에 의존하는 RNN을 병렬 계산이 가능한 셀프-어텐션으로 대체함으로써 훈련 속도를 크게 향상시키고, 더 우수한 번역 품질을 달성하는 새로운 패러다임을 제시함.

An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition

· 약 5분
Baoguang Shi
Huazhong University of Science and Technology 연구원
Xiang Bai
연구원
Cong Yao
연구원

논문 정보

  • 제목: An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition
  • 저자: Baoguang Shi, Xiang Bai, Cong Yao (Huazhong University of Science and Technology)
  • 학회/저널: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
  • 발행일: 2016-12-28
  • DOI: 10.1109/TPAMI.2016.2646371
  • 주요 연구 내용: 이미지 기반 시퀀스 인식을 위해 Convolutional Neural Network(CNN)와 Recurrent Neural Network(RNN)을 통합한 새로운 아키텍처인 CRNN(Convolutional Recurrent Neural Network)을 제안함. 이 모델은 특징 추출(CNN), 시퀀스 모델링(RNN), 전사(Transcription)의 세 부분을 하나의 프레임워크로 결합하여 문자 단위의 레이블 없이 종단간(End-to-End) 학습이 가능함.
  • 주요 결과 및 결론: IIIT-5K, SVT, ICDAR 등 표준 장면 텍스트 인식 벤치마크에서 기존 최고 수준의 알고리즘들과 대등하거나 더 우수한 성능을 보임. 또한, 제안된 모델은 훨씬 적은 파라미터(8.3M)를 사용하여 효율적이며, 악보 인식과 같은 다른 시퀀스 인식 문제에도 일반화될 수 있음을 확인함.
  • 기여점: 기존 방법들과 달리 구성 요소를 개별적으로 훈련할 필요 없는 완전한 종단간 학습이 가능함. 문자 분할이나 정규화 과정 없이 임의 길이의 시퀀스를 자연스럽게 처리하며, 사전(lexicon) 유무에 관계없이 높은 성능을 달성함.

XGBoost: A Scalable Tree Boosting System

· 약 6분
Tianqi Chen
University of Washington 연구원
Carlos Guestrin
연구원

논문 정보

  • 제목: XGBoost: A Scalable Tree Boosting System
  • 저자: Tianqi Chen (University of Washington), Carlos Guestrin (University of Washington)
  • 학회/저널: KDD '16 (The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining)
  • 발행일: 2016-08-13
  • DOI: 10.1145/2939672.2939785
  • 주요 연구 내용: 본 논문은 확장 가능한 엔드투엔드 트리 부스팅 시스템인 XGBoost를 제안함. 희소 데이터를 효율적으로 처리하기 위한 새로운 희소성 인지 알고리즘(sparsity-aware algorithm)과 근사 트리 학습을 위한 가중치 분위 스케치(weighted quantile sketch)를 도입함. 또한, 캐시 접근 패턴, 데이터 압축, 샤딩(sharding)과 같은 시스템 최적화를 통해 확장성을 극대화함.
  • 주요 결과 및 결론: XGBoost는 단일 머신에서 기존 솔루션보다 10배 이상 빠른 성능을 보이며, 분산 및 메모리 제한 환경에서도 수십억 개의 대용량 데이터를 훨씬 적은 리소스로 처리할 수 있음. 이러한 알고리즘과 시스템 최적화의 결합을 통해 실제 대규모 문제를 해결하는 강력한 솔루션 제공.
  • 기여점: 고도로 확장 가능한 엔드투엔드 트리 부스팅 시스템을 설계 및 구축함. 병렬 트리 학습을 위한 새로운 희소성 인지 알고리즘과 효율적인 제안 계산을 위한 이론적으로 정당화된 가중치 분위 스케치를 제안함. 또한, 메모리 외부(out-of-core) 트리 학습을 위한 효과적인 캐시 인식 블록 구조를 도입하여 시스템 효율성을 높임.

MUST-CNN: A Multilayer Shift-and-Stitch Deep Convolutional Architecture for Sequence-Based Protein Structure Prediction

· 약 5분
Zeming Lin
연구원
Jack Lanchantin
연구원
Yanjun Qi
연구원

논문 정보

  • 제목: MUST-CNN: A Multilayer Shift-and-Stitch Deep Convolutional Architecture for Sequence-Based Protein Structure Prediction
  • 저자: Zeming Lin, Jack Lanchantin, Yanjun Qi (University of Virginia)
  • 학회/저널: Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)
  • 발행일: 2016-02-12
  • DOI: 해당 없음
  • 주요 연구 내용: 단백질의 아미노산 서열로부터 2차 구조나 용매 접근성 같은 속성을 예측하기 위해 딥 컨볼루션 신경망(CNN)을 활용. Max-pooling으로 인한 해상도 저하 문제를 해결하기 위해, 다중 계층에 'shift-and-stitch' 기법을 적용하여 전체 서열에 대한 완전 밀집(fully dense) 예측을 효율적으로 생성하는 종단간(end-to-end) 모델 MUST-CNN을 제안함.
  • 주요 결과 및 결론: 제안된 MUST-CNN 모델은 기존의 최첨단 모델들보다 구조적으로 더 단순함에도 불구하고, 4prot 및 CullPDB라는 두 개의 대규모 단백질 속성 예측 데이터셋에서 더 우수한 성능을 달성함. 특히 4prot 데이터셋에서 3클래스 2차 구조 예측(ssp) 정확도(Q3Q_3) 89.6%를 기록했으며, CullPDB 데이터셋에서는 8클래스 예측(Q8Q_8) 정확도 68.4%를 달성하여 기존 최고 성능을 경신함.
  • 기여점: 딥 CNN에 적용 가능한 새로운 'multilayer shift-and-stitch' (MUST) 기법을 제안하여 학습 및 추론 시간을 크게 단축시키고 모델의 규모를 확장함. 또한, 임의 길이의 서열에 대해 각 위치별(per-position) 레이블링을 수행하는 일반적인 종단간 시스템을 제안했으며, 이를 통해 두 개의 대규모 단백질 데이터셋에서 최첨단 성능을 달성함.

Mastering the game of Go with deep neural networks and tree search

· 약 6분
David Silver
Google DeepMind 연구원
Aja Huang
연구원
Chris J. Maddison
연구원
Arthur Guez
연구원
Laurent Sifre
연구원
George van den Driessche
연구원
Thore Graepel
연구원

논문 정보

  • 제목: Mastering the game of Go with deep neural networks and tree search
  • 저자: David Silver 외 (Google DeepMind)
  • 학회/저널: Nature
  • 발행일: 2016-01-28
  • DOI: 10.1038/nature16961
  • 주요 연구 내용: 바둑판의 국면을 평가하는 가치망(value network)과 다음 수를 선택하는 정책망(policy network)이라는 두 개의 심층 신경망을 몬테카를로 트리 탐색(MCTS)과 결합한 새로운 접근법을 제안함. 신경망은 인간 전문가의 기보를 이용한 지도 학습과 알파고 자체 대국을 통한 강화 학습의 조합으로 훈련됨.
  • 주요 결과 및 결론: 개발된 프로그램 알파고(AlphaGo)는 다른 주요 바둑 프로그램들을 상대로 99.8%의 압도적인 승률을 기록했으며, 당시 유럽 챔피언이었던 판후이 프로 2단을 5대 0으로 이김. 이는 컴퓨터 프로그램이 정식 크기의 바둑판에서 인간 프로 기사를 상대로 거둔 최초의 승리임.
  • 기여점: 인간 전문가의 기보를 활용한 지도 학습과 자체 대국 기반의 강화 학습을 결합한 혁신적인 신경망 훈련 파이프라인을 구축함. 심층 신경망을 통해 바둑의 복잡한 국면 평가와 수 선택 문제를 해결하고, 이를 효율적으로 몬테카를로 트리 탐색과 통합하여 인간 최고 수준의 기력을 달성함.