본문으로 건너뛰기

"Shap" 태그로 연결된 2개 게시물개의 게시물이 있습니다.

SHAP

모든 태그 보기

Alternative Methods to SHAP Derived from Properties of Kernels: A Note on Theoretical Analysis

· 약 4분
Kazuhiro Hiraki
연구원
Shinichi Ishihara
연구원
Junnosuke Shino
연구원

논문 정보

  • 제목: Alternative Methods to SHAP Derived from Properties of Kernels: A Note on Theoretical Analysis
  • 저자: Kazuhiro Hiraki (International Monetary Fund), Shinichi Ishihara (Independent Researcher), Junnosuke Shino (Waseda University)
  • 학회/저널: 2024 IEEE International Conference on Big Data (Big Data)
  • 발행일: 2024-12-15 (추정)
  • DOI: 10.1109/BigData62323.2024.10825215
  • 주요 연구 내용: 본 연구는 LIME(Local Interpretable Model-agnostic Explanations)의 커널을 이용하여 AFA(Additive Feature Attribution)의 일반적인 분석식을 유도함. 커널에 대칭성 조건을 부과하여, 특정 커널로부터 AFA 값을 분석적으로 계산할 수 있는 일반적인 프레임워크를 제시함.
  • 주요 결과 및 결론: 이 프레임워크를 통해 기존의 AFA 방법론인 SHAP, ES, FESP를 커널 기반으로 재해석하고, LS prenucleolus 개념과 일치하거나 LIME의 커널 속성과 부합하는 새로운 AFA 방법론 4가지를 제안함. 이를 통해 SHAP의 대안이 될 수 있는 설명가능 AI 방법론의 이론적 기반을 확장함.
  • 기여점: LIME의 커널 관점에서 AFA 방법론들을 통합적으로 분석하고 생성할 수 있는 일반화된 분석식을 최초로 유도함. 이를 통해 SHAP, ES 등 기존 방법론들을 커널 기반으로 재정의하고, LIME의 철학에 더 부합하는 새로운 AFA 대안들을 제시하여 설명가능 AI 분야의 이론적 토대를 넓힘.

Explainable AI for Material Property Prediction Based on Energy Cloud: A Shapley-Driven Approach

· 약 5분
Faiza Qayyum
연구원
Murad Ali Khan
연구원
Do-Hyeun Kim
연구원
Hyunseok Ko
연구원
Ga-Ae Ryu
연구원

논문 정보

  • 제목: Explainable AI for Material Property Prediction Based on Energy Cloud: A Shapley-Driven Approach
  • 저자: Faiza Qayyum (Jeju National University), Murad Ali Khan (Jeju National University), Do-Hyeun Kim (Jeju National University), Hyunseok Ko (Korea Institute of Ceramic Engineering and Technology), Ga-Ae Ryu (Korea Institute of Ceramic Engineering and Technology)
  • 학회/저널: Materials
  • 발행일: 2023-11-24
  • DOI: 10.3390/ma16237322
  • 주요 연구 내용: TabNet 딥러닝 프레임워크를 활용하여 PZT(납 지르콘산 티탄산염) 세라믹의 조성 및 공정 데이터를 기반으로 유전율 특성을 예측하는 모델을 개발함. 모델의 예측 결과를 해석하고 입력 변수와 예측 사이의 관계를 이해하기 위해 설명가능 AI(XAI) 기법인 SHAP(Shapley additive explanations) 분석을 수행함.
  • 주요 결과 및 결론: 제안된 TabNet 모델은 기존 머신러닝 모델(XGBoost, Bi-Layered ANN)보다 우수한 성능을 보였으며, 평균 제곱 오차(MSE) 0.047, 평균 절대 오차(MAE) 0.042를 달성함. SHAP 분석을 통해 압전상수(d33), 유전 손실(tangent loss), 화학식이 유전율 예측에 중요한 기여를 하는 반면, 공정 시간은 상대적으로 영향이 적음을 확인함.
  • 기여점: PZT 세라믹 특성 예측을 위해 특화된 새로운 TabNet 기반 딥러닝 프레임워크를 개발함. SHAP 분석을 통해 모델의 예측에 대한 해석 가능성을 높이고, 다양한 입력 파라미터가 예측에 미치는 영향을 심층적으로 분석하여 압전 재료 특성 예측 분야의 신뢰성을 향상시킴.