본문으로 건너뛰기

"Regression" 태그로 연결된 1개 게시물개의 게시물이 있습니다.

회귀

모든 태그 보기

데이터 불균형과 측정 오차를 고려한 생분해성 섬유 인장 강신도 예측 모델 개발

· 약 5분
Se-Chan Park
연구원
김덕엽
경북대학교 컴퓨터학부 박사과정생
서강복
경북대학교 컴퓨터학부 박사
이우진
경북대학교 컴퓨터학부 전임교수

논문 정보

  • 제목: The Development of Biodegradable Fiber Tensile Tenacity and Elongation Prediction Model Considering Data Imbalance and Measurement Error
  • 저자: 박세찬, 김덕엽, 서강복, 이우진 (경북대학교 컴퓨터학부)
  • 학회/저널: KIPS Transactions on Software and Data Engineering (정보처리학회논문지/소프트웨어 및 데이터 공학)
  • 발행일: 2022-12-01
  • DOI: 10.3745/KTSDE.2022.11.12.489
  • 주요 연구 내용: 섬유 방사 공정 데이터의 특성(적은 양, 불균형, 샘플 간 오차)을 고려하여, 동일 방사 조건 클러스터 내 평균과의 거리를 기준으로 이상치를 처리하는 기법을 제안함. 또한, 여러 공정 변수와 예측 물성 간 상관계수 및 데이터 불균형 정도를 종합적으로 고려한 복합 데이터 증강 기법을 제안함.
  • 주요 결과 및 결론: 제안한 이상치 처리 및 데이터 증강 기법을 적용했을 때, 기존 기법들(박스 플롯, CBLOF, ROS, SMOTE)보다 데이터 손실이 적고 불균형을 효과적으로 완화함. MLP 모델 기준, 인장 강도 예측에서 평균절대오차(MAE)는 약 27% 감소하고 조정된 결정계수(R2R^2)는 0.5 미만에서 약 0.8 수준으로 크게 개선됨.
  • 기여점: 데이터 수집이 어려운 섬유 산업에서 발생하는 데이터 부족, 불균형, 측정 오차 문제를 해결하기 위한 맞춤형 데이터 전처리 기법을 제안함. 이를 통해 AI 예측 모델의 성능과 신뢰도를 향상시켜 공정 비용 절감 및 품질 최적화에 기여할 수 있는 실용적 방안을 제시.