본문으로 건너뛰기

"Quality control" 태그로 연결된 2개 게시물개의 게시물이 있습니다.

품질 관리

모든 태그 보기

Automated machine learning for fabric quality prediction: a comparative analysis

· 약 5분
Ahmet Metin
연구원
Turgay Tugay Bilgin
연구원

논문 정보

  • 제목: Automated machine learning for fabric quality prediction: a comparative analysis
  • 저자: Ahmet Metin (Bursa Technical University), Turgay Tugay Bilgin (Bursa Technical University)
  • 학회/저널: PeerJ Computer Science
  • 발행일: 2024-07-23
  • DOI: 10.7717/peerj-cs.2188
  • 주요 연구 내용: 7개의 오픈소스 AutoML(FLAML, AutoViML, EvalML, AutoGluon, H2OAutoML, PyCaret, TPOT) 기술을 비교하여 직물 품질 데이터의 불균형 문제를 해결하고, 계산 효율성과 예측 정확성 간의 최적 균형점을 찾는 방법론을 제시. IoT 센서와 ERP 시스템에서 수집된 데이터를 활용하여 품질 예측 모델을 자동화함.
  • 주요 결과 및 결론: EvalML이 평균 절대 오차(MAE)에서 2.8282로 가장 우수한 성능을 보였고, AutoGluon은 평균 절대 백분율 오차(MAPE), 평균 제곱근 오차(RMSE), 결정 계수(R2R^2)에서 각각 1.0444, 21.129, 0.964로 가장 나은 성능을 기록함. 그러나 AutoGluon은 추론 시간이 길다는 단점이 있어, 정확성과 계산 효율성 간의 상충 관계를 확인함.
  • 기여점: 섬유 산업에서 AutoML 적용에 대한 실용적인 가이드를 제공하고 Industry 4.0 기술을 활용한 직물 품질 예측 향상 로드맵을 제시. 예측 정확성과 계산 효율성 간의 균형점 탐색의 중요성을 강조하고, 모델 해석을 위한 특징 중요도(feature importance) 분석의 유용성을 입증함.

Automated fabric defect detection—A review

· 약 5분
Henry Y.T. Ngan
The University of Hong Kong 연구원

논문 정보

  • 제목: Automated fabric defect detection—A review
  • 저자: Henry Y.T. Ngan, Grantham K.H. Pang, Nelson H.C. Yung (The University of Hong Kong)
  • 학회/저널: Image and Vision Computing
  • 발행일: 2011-02-27
  • DOI: 10.1016/j.imavis.2011.02.002
  • 주요 연구 내용: 본 논문은 최근의 자동화된 직물 결함 검출 방법들을 종합적으로 리뷰함. 연구들을 크게 비-모티프 기반(non-motif-based) 접근법과 모티프 기반(motif-based) 접근법으로 나누고, 다시 통계적, 스펙트럼, 모델 기반, 학습, 구조적, 하이브리드, 모티프 기반의 7가지 카테고리로 세분화하여 분석함.
  • 주요 결과 및 결론: 각 방법론의 검출 성공률, 강점, 약점을 비교 분석한 결과를 제시함. 특정 패턴 그룹(p1)에 특화된 방법들은 높은 성공률을 보이지만 일반성이 부족하며, 여러 패턴 그룹에 적용 가능한 모티프 기반 접근법은 일반성이 높지만 상대적으로 성공률이 약간 낮음. 향후 연구 방향으로 공통 참조 데이터베이스 구축, 하이브리드 접근법 개발, 실시간 적용을 위한 계산 효율성 향상 등을 제안함.
  • 기여점: 직물 결함 검출 연구에 대한 최신 동향을 제공하며, 7가지 클래스로 구성된 넓은 범위의 분류 체계를 제안함. 각 방법론에 대한 정성적 분석과 검출 성공률 데이터를 포함하여 비교 연구를 수행하고, 향후 연구 방향에 대한 통찰을 제공함.