본문으로 건너뛰기

"Feature importance" 태그로 연결된 1개 게시물개의 게시물이 있습니다.

특성 중요도

모든 태그 보기

Automated machine learning for fabric quality prediction: a comparative analysis

· 약 5분
Ahmet Metin
연구원
Turgay Tugay Bilgin
연구원

논문 정보

  • 제목: Automated machine learning for fabric quality prediction: a comparative analysis
  • 저자: Ahmet Metin (Bursa Technical University), Turgay Tugay Bilgin (Bursa Technical University)
  • 학회/저널: PeerJ Computer Science
  • 발행일: 2024-07-23
  • DOI: 10.7717/peerj-cs.2188
  • 주요 연구 내용: 7개의 오픈소스 AutoML(FLAML, AutoViML, EvalML, AutoGluon, H2OAutoML, PyCaret, TPOT) 기술을 비교하여 직물 품질 데이터의 불균형 문제를 해결하고, 계산 효율성과 예측 정확성 간의 최적 균형점을 찾는 방법론을 제시. IoT 센서와 ERP 시스템에서 수집된 데이터를 활용하여 품질 예측 모델을 자동화함.
  • 주요 결과 및 결론: EvalML이 평균 절대 오차(MAE)에서 2.8282로 가장 우수한 성능을 보였고, AutoGluon은 평균 절대 백분율 오차(MAPE), 평균 제곱근 오차(RMSE), 결정 계수(R2R^2)에서 각각 1.0444, 21.129, 0.964로 가장 나은 성능을 기록함. 그러나 AutoGluon은 추론 시간이 길다는 단점이 있어, 정확성과 계산 효율성 간의 상충 관계를 확인함.
  • 기여점: 섬유 산업에서 AutoML 적용에 대한 실용적인 가이드를 제공하고 Industry 4.0 기술을 활용한 직물 품질 예측 향상 로드맵을 제시. 예측 정확성과 계산 효율성 간의 균형점 탐색의 중요성을 강조하고, 모델 해석을 위한 특징 중요도(feature importance) 분석의 유용성을 입증함.