주요 연구 내용: VR FPS 게임의 사운드 스트림을 실시간으로 캡처하여 Long-Short-Term Memory (LSTM) 모델로 총성, 피격, 폭발 등 의미론적 이벤트로 분류한다. 이후 분류된 이벤트에 맞춰 미리 디자인된 전신 햅틱 패턴을 생성하여 햅틱 슈트를 통해 사용자에게 전달하는 시스템을 제안함.
주요 결과 및 결론: 사용자 연구를 통해 제안된 의미론적 사운드-햅틱 변환 시스템이 기존의 단순 신호 처리 기반 변환 방식(NS-ALL)이나 의미는 맞지만 패턴이 무작위인 방식(S-RAND)에 비해 일치성, 방해 요소, 선호도 측면에서 월등히 높은 사용자 경험 점수를 기록함. 이는 사운드의 의미를 정확히 분류하고 그에 맞는 햅틱 패턴을 제공하는 것이 몰입감 향상에 중요함을 시사함.
기여점: 게임 프로그램과 독립적으로 작동하면서 실시간으로 사운드의 의미를 파악하여 전신 햅틱 피드백을 자동으로 생성하는 시스템을 개발함. 또한, 사용자 연구를 통해 의미론적 변환과 적절한 햅틱 패턴 디자인이 VR 게임 경험을 크게 향상시킬 수 있음을 실험적으로 증명함.
주요 연구 내용: 본 논문은 AI, IoT, 클라우드, 애자일 등 최신 기술이 소프트웨어 테스팅 분야에 미치는 영향을 분석함. 문헌 연구를 통해 최신 테스팅 동향, 지속적인 과제, 그리고 새로운 기회들을 종합적으로 검토하고, 미래의 테스트 엔지니어가 갖추어야 할 역량을 조망함.
주요 결과 및 결론: 소프트웨어 테스팅은 AI와 IoT 같은 신기술과 깊이 연관되어 빠르게 발전하고 있으며, 테스터에게는 코딩 능력과 새로운 도구 및 프레임워크에 대한 적응력이 요구됨. 애자일, 자동화, TCoE(Testing Centers of Excellence)가 QA Practice를 재편하고 있으나, 성능 테스트, 숨겨진 종속성, 품질 책임과 같은 과제는 여전히 남아있음.
기여점: 소프트웨어 테스팅의 현재 상황과 미래 방향에 대한 포괄적인 개요를 제공함. 최신 동향, 고질적인 문제, 새로운 기회를 종합하여 미래의 테스트 엔지니어를 위한 지속적인 학습과 기술 개발의 필요성을 강조함.
주요 연구 내용: 본 연구는 재료 설계 및 엔지니어링 응용을 위해 기계학습(ML)과 설명가능 인공지능(XAI)을 통합한 새로운 정량적 계산 프레임워크를 제안함. 이 프레임워크는 데이터 처리, 특징 선택, 모델 훈련, 성능 평가, 설명가능성 분석 및 실제 클라우드 배포를 포함하는 체계적인 파이프라인으로 구성됨.
주요 결과 및 결론: 고성능 콘크리트(HPC)의 압축 강도 예측 사례 연구를 통해 프레임워크를 검증했으며, XGBoost 모델이 R2=0.918로 가장 높은 예측 성능을 달성함. SHAP과 LIME은 특징 중요도와 재료 간 상호작용에 대한 상세한 통찰력을 제공했으며, 훈련된 모델은 클라우드 기반 API로 배포되어 확장성과 접근성을 확보함.
기여점: 기존 ML 접근법의 '블랙박스' 한계를 극복하기 위해 고급 설명가능성 기술을 통합하고, 비선형적 특징 상호작용을 체계적으로 다루며, 확장 가능한 배포 전략을 제공함. 이를 통해 데이터 기반 예측과 근본적인 재료 과학 원리 사이의 간극을 좁히는 해석 가능하고 배포 가능한 AI 기반 재료 정보학 솔루션을 제시함.
제목: WHAT DOES IT MEAN TO BE A TRANSFORMER? INSIGHTS FROM A THEORETICAL HESSIAN ANALYSIS
저자: Weronika Ormaniec (ETH Zürich), Felix Dangel (Vector Institute), Sidak Pal Singh (ETH Zürich)
학회/저널: ICLR 2025
발행일: 2025-03-17
DOI: 해당 없음
주요 연구 내용: 단일 셀프 어텐션 레이어의 손실 함수에 대한 헤시안 행렬을 이론적으로 완전히 유도하고, 이를 행렬 미분 형태로 표현함. 헤시안의 각 블록이 데이터, 가중치, 어텐션 모멘트(attention moments)에 어떻게 의존하는지 분석하여 기존 MLP나 CNN과의 구조적 차이점을 명확히 함.
주요 결과 및 결론: 트랜스포머 헤시안은 파라미터 그룹(Query, Key, Value)에 따라 데이터와 가중치에 대한 의존성이 매우 비선형적이고 이질적(heterogeneous)임을 보임. Softmax 활성화 함수와 Query-Key 파라미터화와 같은 트랜스포머의 핵심 설계 요소가 이러한 이질성의 주요 원인임을 밝힘.
기여점: 트랜스포머 학습에 통용되는 적응형 옵티마이저, 레이어 정규화, 학습률 워밍업 등의 기법이 필요한 이유를 헤시안의 복잡하고 이질적인 구조를 통해 설명함. 이는 트랜스포머의 독특한 최적화 환경과 그로 인한 문제들에 대한 깊은 이론적 토대를 제공함.
제목: SMALL LANGUAGE MODELS: SURVEY, MEASUREMENTS, AND INSIGHTS
저자: Zhenyan Lu (Beijing University of Posts and Telecommunications), Xiang Li (Peng Cheng Laboratory), Dongqi Cai (Helixon Research), Rongjie Yi (Beijing University of Posts and Telecommunications), Fangming Liu (Beijing University of Posts and Telecommunications), Xiwen Zhang (Beijing University of Posts and Telecommunications), Nicholas D. Lane (University of Cambridge), Mengwei Xu (Beijing University of Posts and Telecommunications)
학회/저널: arXiv
발행일: 2025-02-26 (v3)
DOI: arXiv:2409.15790
주요 연구 내용: 1억~50억 파라미터 사이의 디코더-전용 트랜스포머 기반 소형 언어 모델(SLM) 70개를 대상으로 기술 혁신을 아키텍처, 학습 데이터셋, 학습 알고리즘 세 가지 축으로 분석함. 또한, 상식 추론, 수학, 인-컨텍스트 학습, 긴 컨텍스트 처리 등 다양한 영역에서 모델의 능력을 평가하고, 온디바이스 환경에서의 추론 지연 시간과 메모리 사용량을 벤치마킹함.
주요 결과 및 결론: SLM의 성능은 2022년에서 2024년 사이에 LLM보다 빠르게 발전했으며, 모델 성능에는 아키텍처보다 데이터 품질이 더 결정적인 영향을 미침. 최신 SLM은 Chinchilla 법칙이 제안하는 것보다 훨씬 많은 토큰으로 '과잉 학습'되는 경향이 있으며, 이는 제한된 자원의 디바이스에 더 강력한 모델을 배포하기 위함임. 모델 아키텍처는 특히 추론의 프리필(prefill) 단계에서 지연 시간에 큰 영향을 줌.
기여점: 최근 발표된 SLM들을 철저히 검토하고 핵심 혁신을 요약하며, 모델의 능력과 온디바이스 비용을 포괄적으로 벤치마킹함. 심층 분석을 통해 향후 SLM 연구에 기여할 수 있는 통찰력을 제공하고, 모든 결과와 벤치마크 도구를 공개하여 관련 연구를 촉진함.
주요 연구 내용: 195개의 암석 선형절삭시험 데이터세트를 구축하여 다변수 선형 회귀(MLR) 분석으로 기초 상관관계를 파악하고, 무작위 탐색 교차 검증(Randomized Search CV)으로 하이퍼파라미터를 튜닝한 최적화된 랜덤 포레스트(RF) 모델을 제안함. 이 모델을 사용하여 픽 커터의 평균 수직력(FNm)과 평균 절삭력(FCm)을 예측함.
주요 결과 및 결론: 최적화된 RF 모델은 MLR 모델(FNmR2=0.743, FCmR2=0.674) 대비 매우 우수한 예측 성능을 보임. 테스트 데이터 기준, FNm 예측 R2는 0.983, FCm 예측 R2는 0.908을 달성함. 특징 중요도 분석 결과, FNm은 일축압축강도(UCS)가 지배적 영향을 미쳤으나, FCm은 여러 매개변수가 복합적으로 작용하는 것으로 나타남.
기여점: 다양한 암종과 절삭 조건을 포함하는 포괄적인 데이터셋을 활용하여, 픽 커터 작용력 예측에 최적화된 RF 머신러닝 모델을 제시함. 특히 FNm과 FCm에 영향을 미치는 주요 인자(UCS 등)를 규명함으로써 굴착 효율성 및 공구 마모 예측의 정확도를 크게 향상시킴.
주요 연구 내용: 코드 요소의 결함 의심 점수(Fault Localisation)와 코드 변경 이력(Version Control)을 결합하여 버그 유발 커밋(BIC)의 가능성을 정량화하는 'FONTE' 기법 제안. FONTE는 3단계(필터링, 의미 보존 커밋 제거, 점수화)를 통해 BIC 탐색 공간을 줄이고 순위를 매김.
주요 결과 및 결론: 206개 실제 BIC 대상 평가 결과, FONTE는 기존 IR 기반 BIC 식별 기법 대비 최대 45.8% 높은 MRR을 달성. 또한 FONTE 점수를 활용한 '가중 이진 탐색(Weighted Bisection)'은 표준 이진 탐색 대비 탐색 반복 횟수를 98%의 사례에서 감소시킴.
기여점: 버그 리포트나 버그 수정 커밋(BFC) 없이, 테스트 실패 정보(커버리지)와 커밋 이력만으로 BIC를 식별하는 효율적이고 유연한 비지도 방식 제안. 대규모 산업 프로젝트(SAP HANA)의 배치 테스팅 실패 시나리오에 적용하여 실용성 입증.
제목: AI-Assisted Discovery of Biodegradable Polymer Alternatives
저자: Peter Broklyn, Sabir K
학회/저널: Polymer Recycling
발행일: 2024년 12월
DOI: -
주요 연구 내용: 인공지능(AI)을 활용하여 생분해성 고분자 대체재를 발견하는 방법론과 기술을 탐색하는 연구임. 기존의 시간과 비용이 많이 소모되는 시행착오 기반의 접근법 대신, AI를 통해 물질의 특성을 예측하고, 고분자 제형을 최적화하며, 새로운 대체재를 식별하는 과정을 가속화하는 역할을 강조함.
주요 결과 및 결론: 머신러닝을 이용해 고분자의 물성을 예측하고, 생성 모델을 활용해 새로운 고분자 구조를 설계하며, 데이터 마이닝과 고속 스크리닝을 통해 유망한 후보를 식별할 수 있음을 보여줌. 이러한 AI 기술은 생분해성 폴리에스터 및 고분자 혼합물의 개발 사례에서 그 유용성이 입증됨.
기여점: 기존의 고분자 연구 개발의 한계를 극복하기 위해 AI의 잠재력을 제시함. 특히, 분자 구조와 물성 간의 관계를 밝혀내고, 새로운 물질을 제안하며, 실험 과정을 간소화하는 데 AI가 핵심적인 역할을 할 수 있음을 보여줌으로써 지속 가능한 소재 개발의 새로운 방향을 제시함.
주요 연구 내용: 본 연구는 LIME(Local Interpretable Model-agnostic Explanations)의 커널을 이용하여 AFA(Additive Feature Attribution)의 일반적인 분석식을 유도함. 커널에 대칭성 조건을 부과하여, 특정 커널로부터 AFA 값을 분석적으로 계산할 수 있는 일반적인 프레임워크를 제시함.
주요 결과 및 결론: 이 프레임워크를 통해 기존의 AFA 방법론인 SHAP, ES, FESP를 커널 기반으로 재해석하고, LS prenucleolus 개념과 일치하거나 LIME의 커널 속성과 부합하는 새로운 AFA 방법론 4가지를 제안함. 이를 통해 SHAP의 대안이 될 수 있는 설명가능 AI 방법론의 이론적 기반을 확장함.
기여점: LIME의 커널 관점에서 AFA 방법론들을 통합적으로 분석하고 생성할 수 있는 일반화된 분석식을 최초로 유도함. 이를 통해 SHAP, ES 등 기존 방법론들을 커널 기반으로 재정의하고, LIME의 철학에 더 부합하는 새로운 AFA 대안들을 제시하여 설명가능 AI 분야의 이론적 토대를 넓힘.
제목: 데이터 변동률 기반 회귀 체인을 사용한 생분해성 섬유 원사 물성 예측 모델 개선 (Improving biodegradable fiber yarn property prediction model using data change rate-based regression chain)
저자: 김덕엽, 류영교, 강보권, 김태환, 이우진 (경북대학교 IT대학 컴퓨터학부)
학회/저널: 2024 한국소프트웨어종합학술대회 논문집
발행일: 2024-12
DOI: 제공되지 않음
주요 연구 내용: 본 연구는 데이터 수집 및 분포가 불균형한 생분해성 섬유 방사 데이터의 물성 예측 정확도를 높이기 위한 방법을 제안함. 기존의 상관 분석은 신뢰성이 떨어지므로, 방사 공정 데이터에 따른 물성 데이터의 변동률을 계산하고 변동률 간의 상관관계를 분석하여 물성 간 종속성을 평가함. 이 평가 결과를 바탕으로 회귀 체인(Regression Chain)을 구성하여 예측 모델을 개선함.
주요 결과 및 결론: 데이터 변동률 기반 분석 결과, 인장강도는 인장신도와 강한 종속성을 보였으며(상관계수 0.73), 이는 기존 상관 분석 결과와 다름. 이 결과를 바탕으로 인장신도를 예측하여 인장강도 예측 모델의 입력으로 사용하는 회귀 체인을 적용했을 때, 기존 모델 대비 MAE는 13%, MSE는 20%, R²는 5% 향상된 성능을 보임.
기여점: 불균형한 산업 데이터에서 기존 상관 분석의 한계를 지적하고, 데이터 변동률이라는 새로운 기준으로 물성 간 종속성을 더 신뢰성 있게 평가하는 방법을 제시함. 이는 국한적인 상황에서 회귀 체인 모델을 적용하여 예측 성능을 향상시킬 수 있음을 실험적으로 입증함.