Analysing an imbalanced stroke prediction dataset using machine learning techniques
· 약 5분
논문 정보
- 제목: Analysing an Imbalanced Stroke Prediction Dataset Using Machine Learning Techniques
- 저자: Viswapriya Subramaniyam Elangovan (SRM Institute of Science and Technology), Rajeswari Devarajan (SRM Institute of Science and Technology), Osamah I. Khalaf (Al-Nahrain University), Mhd Saeed Sharif (UEL University), Wael Elmedany (University of Bahrain)
- 학회/저널: KIJOMS
- 발행일: 2022-01-01
- DOI: DOI 링크 없음
- 주요 연구 내용: Kaggle의 공개 뇌졸중 예측 데이터셋은 소수 클래스(뇌졸중 환자)가 매우 적은 불균형 문제를 가짐. 이 문제를 해결하기 위해 SMOTE와 Adasyn 같은 오버샘플링 기법을 적용하여 데이터셋의 균형을 맞추고, 제안하는 하이브리드 신경망-랜덤 포레스트(NN-RF) 모델의 성능을 평가함.
- 주요 결과 및 결론: 제안된 NN-RF 모델은 Adasyn 오버샘플링 기법을 적용했을 때 가장 높은 성능을 보였음. F1-score 75%, 정확도 84%, AUC 86%를 달성하여 다른 벤치마킹 알고리즘(DT, LR, NN, RF)보다 우수한 예측 성능을 입증함.
- 기여점: 데이터 불균형 문제를 해결하기 위한 오버샘플링 기법의 효과를 검증함. 또한, 기존 단일 모델들의 한계를 극복하기 위해 신경망과 랜덤 포레스트를 결합한 하이브리드 모델을 제안하고 그 우수성을 실험적으로 증명함.