본문으로 건너뛰기

"Fabric defect" 태그로 연결된 1개 게시물개의 게시물이 있습니다.

직물 결함

모든 태그 보기

Fabric Defect Classification Using Combination of Deep Learning and Machine Learning

· 약 3분
Semih UTKU
연구원
Hakan ÖZDEMİR
연구원

논문 정보

  • 제목: Fabric Defect Classification Using Combination of Deep Learning and Machine Learning
  • 저자: Fatma Günseli YAŞAR ÇIKLAÇANDIR (İzmir Katip Çelebi University), Semih UTKU (Dokuz Eylul University), Hakan ÖZDEMİR (Dokuz Eylul University)
  • 학회/저널: Journal of Artificial Intelligence and Data Science (JAIDA)
  • 발행일: 2021-08-12
  • DOI: 제공되지 않음
  • 주요 연구 내용: 딥러닝 모델(ResNet18, GoogLeNet)을 이용한 원단 불량 분류와, 이 모델들에서 특징만 추출하고 분류는 SVM(Support Vector Machines)으로 수행하는 하이브리드 방식의 성능을 비교 분석함. 딥러닝의 단점인 긴 처리 시간을 개선하는 것을 목표로 함.
  • 주요 결과 및 결론: 순수 ResNet18 모델이 가장 높은 분류 정확도(최대 87.5%)를 보였으나, ResNet18로 특징을 추출하고 SVM으로 분류하는 하이브리드 모델은 정확도 저하가 크지 않으면서도 분류 시간을 약 60배 단축시키는 결과를 보임.
  • 기여점: 딥러닝의 높은 특징 추출 능력과 머신러닝 분류기의 속도 이점을 결합하여, 원단 불량 검출 시스템에서 시간 효율성과 정확성 간의 균형을 맞춘 실용적인 접근법을 제시함. 이를 통해 속도가 중요한 실제 생산 환경에 적용 가능한 지능형 시스템의 가능성을 보임.