딥러닝 기반 폴리에스터 섬유의 염색색상 결과예측 모형 개발
· 약 4분
논문 정보
- 제목: 딥러닝 기반 폴리에스터 섬유의 염색색상 결과예측 모형 개발 (Development of a model for predicting dyeing color results of polyester fibers based on deep learning)
- 저자: 이우창(다이텍연구원), 손현식(다이텍연구원), 이충권(계명대학교 경영정보학전공 교수)
- 학회/저널: 스마트미디어저널 (Smart Media Journal)
- 발행일: 2022-04-18
- DOI: 10.30693/SMJ.2022.11.3.74
- 주요 연구 내용: 폴리에스터 섬유 염색 공정 최적화를 위해 376건의 실험 데이터를 수집하고, 이를 다층퍼셉트론(MLP), CNN, LSTM 딥러닝 모델에 학습시켜 최종 염색 색상(L*, a*, b*)을 예측함. 각 모델의 성능은 K-겹 교차 검증을 통해 평가 및 비교됨.
- 주요 결과 및 결론: 세 가지 모델 중 염색 공정의 순차적 특성을 반영한 LSTM 모델이 가장 우수한 예측 성능을 보임. LSTM 모델은 CMC(2:1) 색차 평균이 0.6479로 가장 낮았고, L*, a*, b* 각 값에 대한 R-Square 값도 가장 높아 분산 설명력이 뛰어났음.
- 기여점: 본 연구는 딥러닝 기술을 염색 공정에 적용하여 객관적인 색상 예측 모델을 개발함. 특히 LSTM 모델의 우수성을 입증함으로써, 작업자의 숙련도에 대한 의존도를 낮추고 재염 발생을 줄여 염색 공정의 효율성과 품질을 최적화할 수 있는 가능성을 제시함.