본문으로 건너뛰기

"Machine learning" 태그로 연결된 23개 게시물개의 게시물이 있습니다.

머신러닝 - 데이터로부터 패턴을 학습하여 예측과 의사결정을 수행하는 기술

모든 태그 보기

통계적 해석 방법과 모델 기반 방법을 사용한 차원축소: Elementary effect 기법과 random forest regressor 의 비교

· 약 5분
정인범
한양대학교 석사

논문 정보

  • 제목: Dimensionality reduction using statistical analysis and model based methods: a comparison between elementary effect method and random forest regressor
  • 저자: 정인범 (한양대학교 대학원)
  • 학회/저널: 한양대학교 대학원 석사학위논문
  • 발행일: 2018-02
  • DOI: (N/A, URI: 1804:null-200000432990)
  • 주요 연구 내용: 본 연구는 차원축소 기법을 변수선택(Filter, Wrapper, Embedded)과 변수추출(PCA, Autoencoder)로 분류함. 이후 통계적 해석(Filter) 방법인 Elementary Effect(EE) 기법과 모델 기반(Embedded) 방법인 Random Forest Regressor(RFR)의 변수 중요도 계산 방식과 성능을 비교 분석함.
  • 주요 결과 및 결론: 시뮬레이션 모델(데이터 생성 필요)의 경우, EE 기법(특히 Sampling for Uniformity)이 RFR보다 적은 해석 횟수로 높은 변수 선별 정확도를 보였음. 반면, 'Big data'와 같이 이미 데이터가 확보된 경우 RFR이 더 적합했음. 또한 RFR은 변수추출 기법인 Autoencoder보다 사용이 편리하고 우수한 성능을 보임.
  • 기여점: 서로 다른 학문적 배경(통계적 GSA vs. 기계학습)에서 발전한 두 주요 차원축소 기법(EE, RFR)의 성능을 정량적으로 비교, 분석하였음. 데이터 상황(시뮬레이션 vs. 기존 데이터)에 따라 적절한 기법을 선택해야 함을 실증적으로 제시함.

XGBoost: A Scalable Tree Boosting System

· 약 6분
Tianqi Chen
University of Washington 연구원
Carlos Guestrin

논문 정보

  • 제목: XGBoost: A Scalable Tree Boosting System
  • 저자: Tianqi Chen (University of Washington), Carlos Guestrin (University of Washington)
  • 학회/저널: KDD '16 (The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining)
  • 발행일: 2016-08-13
  • DOI: 10.1145/2939672.2939785
  • 주요 연구 내용: 본 논문은 확장 가능한 엔드투엔드 트리 부스팅 시스템인 XGBoost를 제안함. 희소 데이터를 효율적으로 처리하기 위한 새로운 희소성 인지 알고리즘(sparsity-aware algorithm)과 근사 트리 학습을 위한 가중치 분위 스케치(weighted quantile sketch)를 도입함. 또한, 캐시 접근 패턴, 데이터 압축, 샤딩(sharding)과 같은 시스템 최적화를 통해 확장성을 극대화함.
  • 주요 결과 및 결론: XGBoost는 단일 머신에서 기존 솔루션보다 10배 이상 빠른 성능을 보이며, 분산 및 메모리 제한 환경에서도 수십억 개의 대용량 데이터를 훨씬 적은 리소스로 처리할 수 있음. 이러한 알고리즘과 시스템 최적화의 결합을 통해 실제 대규모 문제를 해결하는 강력한 솔루션 제공.
  • 기여점: 고도로 확장 가능한 엔드투엔드 트리 부스팅 시스템을 설계 및 구축함. 병렬 트리 학습을 위한 새로운 희소성 인지 알고리즘과 효율적인 제안 계산을 위한 이론적으로 정당화된 가중치 분위 스케치를 제안함. 또한, 메모리 외부(out-of-core) 트리 학습을 위한 효과적인 캐시 인식 블록 구조를 도입하여 시스템 효율성을 높임.

Cross-dataset learning and person-specific normalisation for automatic Action Unit detection

· 약 5분
Tadas Baltrušaitis
Cambridge University
Marwa Mahmoud
Cambridge University
Peter Robinson
Cambridge University

논문 정보

  • 제목: Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
  • 저자: Tadas Baltrušaitis, Marwa Mahmoud, Peter Robinson (Computer Laboratory, University of Cambridge, United Kingdom)
  • 학회/저널: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2015
  • 발행일: 2015
  • DOI: 10.1109/FG.2015.7284869
  • 주요 연구 내용: 실시간 AU(Facial Action Unit) 감지 및 강도 추정 시스템을 제안함. 외형(HOG) 및 기하학적(landmark) 특징을 사용. 개인별 중립 표정 차이를 보정하기 위해 간단한 중간값(median) 기반 특징 정규화 기법을 사용.
  • 주요 결과 및 결론: 제안한 시스템이 FERA 2015 챌린지의 3가지 태스크(AU 발생 감지, 완전 자동 AU 강도, 사전 분할 AU 강도 추정)에서 모두 기준선(baseline) 성능을 능가함. 여러 데이터셋을 함께 훈련(cross-dataset learning)하는 것이 일반화(generic) 모델 훈련에 이점을 보임.
  • 기여점: 특정 AU 감지 시 개인 맞춤형 중립 표정 정규화의 이점을 시연. 일반화 모델 훈련을 위한 다중 데이터셋 사용의 이점을 시연. 20-30fps로 실시간 실행 가능한 전체 AU 감지 파이프라인을 제시.